
Python Self Assessment

Author: Nghia T. Le

Expected Time = 30 - 40 minutes

Total Points = 20 points

Overview ¶
This self-assessment exercise was designed to provide an opportunity for you to evaluate your competency
with Computer Science (CS) foundations, the Python programming language, and Jupyter notebooks prior
to program enrollment. Passing this exercise will indicate your readiness for the challenging material ahead
of you in the program, but will not guarantee success. Should you not pass this self-assessment, we
recommend you review materials that will allow you to strenghten weaknesses in your programming skill set.
A few suggested resources are listed below.

Learning Objectives
Passing this self-assessment will demonstrate your ability to:

Understand and implement fundamental CS data structures (e.g. lists and trees) and algorithms (e.g.
tree traversals and recursions) in the Python programming language
Recognize and utilize the appropriate built-in Python functions for string, list, tuple, and dictionary data
structures
Process an input text file into the Python lists and dictionaries

Review topics
Fundamentals CS data structures including, but not limited to, trees, lists, tuples, and dictionaries
Fundamental CS concepts including, but not limited to, tree traveral algorithms, recursion, and
efficiency
Basic built-in and user-defined Python functions
Reading and processing a text file in Python

Suggested Python review materials
(note: appearance here does not constitute an endorsement)

python.org (https://docs.python.org/3/tutorial/)
learnpython.org (https://www.learnpython.org/)
w3schools.com (https://www.w3schools.com/python/default.asp)

https://docs.python.org/3/tutorial/
https://www.learnpython.org/
https://www.w3schools.com/python/default.asp

Table of Content

CS Foundations [10 pts]

Question 1 [2 pts]: Depth-First Search
Question 2 [2 pts]: Breadth-First Search
Question 3 [3 pts]: Recursion With Binary Tree
Question 4 [2 pts]: Efficiency - Fibonacci
Question 5 [1 pt]: Efficiency - Memoized Fibonacci

Python Programming [10 pts]

Question 6 [2 pts]: String Methods
Question 7 [1 pt]: Type Casting
Question 8 [3 pts]: File Input - List
Question 9 [3 pts]: File Input - Dictionary
Question 10 [1 pt]: Using Dictionary

Summary
This self-assessment is divided into two sections: the first section will test your foundation in Computer
Science, while the second section will assess your ability to program using Python.

Run the following cell to import modules and declare constants required for this programming
assignment

In [1]: from typing import List, Tuple, Dict, Any

INPUT_TEXT_FILE = './data/people.txt'

Computer Science Foundations [10 pts]
This section is designed to test your familarity with fundamental Computer Science knowledge. Topics
include tree data structure, tree traversal algorithms, recursion, and efficiency.

Please answer questions 1 and 2 according the tree diagram below.

There are two basic approaches to traverse a tree:

Depth-First Search (DFS): The idea is to traverse one of the subtrees (i.e. branches) first, before
moving on to the next subtree. You can check out these resources on Wikipedia
(https://en.wikipedia.org/wiki/Depth-first_search) or GeeksForGeeks
(https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/) for more detailed
information
Breath-First Search (BFS): In this algorithm, we traverse all the nodes on the same level (from left to
right order) before traversing nodes on the next level (Wikipedia (https://en.wikipedia.org/wiki/Breadth-
first_search), GeeksForGeeks (https://www.geeksforgeeks.org/level-order-tree-traversal/))

Throughout this assignment, for both DFS and BFS, assume that we first visit the root node, then we visit
the nodes/subtrees in left to right order.

Question 1: Depth-First Search [2 pts]
List the nodes in the above tree diagram in order of a Depth-First Search (DFS) traversal. Assign your
answer as a list of strings to the variable ans1 , such as ans1 = ['Hank', 'Gus', 'Mike']

https://en.wikipedia.org/wiki/Depth-first_search
https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/
https://en.wikipedia.org/wiki/Breadth-first_search
https://www.geeksforgeeks.org/level-order-tree-traversal/

In [22]: ans1 = ['Walt', 'Jesse', 'Brock', 'Hank', 'Sky', 'Steve', 'Gus', 'Mike
', 'Saul']

Question 2: Breadth-First Search [2 pts]
List the nodes in the above tree diagram in order of a Breadth-First Search (DFS) traversal. Assign your
answer as a list of strings to the variable ans2 , such as ans2 = ['Hank', 'Gus', 'Mike']

In [2]: ans2 = ['Walt', 'Jesse', 'Hank', 'Gus', 'Brock', 'Sky', 'Steve', 'Mike
', 'Saul']

Question 3: Recursion with Binary Tree [3 pts]
Below we give you the template for has_val function, which checks if a binary tree contains a value. The
inputs are the tree of type Node (a simple data structure for binary tree) and a value of any type. The
function returns True if the tree contains the value, and False otherwise.

Please complete the has_val function by replacing the commented lines with your own code. Your
solution should traverse the tree in a DFS, left-to-right manner. Your solution should not add extra lines.

In [3]: class Node:
 """A simple data structure for Binary Tree. You can create a 2-lev
el tree with
 parent (root) node `Walt`, left child `Jesse`, right child `Hank`
as follows:
 tree = Node("Walt")
 tree.left_node = Node("Jesse")
 tree.right_node = Node("Hank")
 """
 def __init__(self, value: Any):
 self.value: Any = value
 self.left_node: Node = None
 self.right_node: Node = None

def has_val(tree: Node, value: Any) -> bool:
 if tree == None:
 return False
 elif tree.value == value:
 return True
 else:
 result = has_val(tree.left_node, value)
 if not result:
 result = has_val(tree.right_node, value)
 return result

To make your life easier, we provide a wrapper function create_test_tree below that creates a tree on
which your implementation will be tested. You can use this to debug your program.

Note: you will also be tested on a hidden tree to which you don't have access.

In [4]: def create_test_tree() -> Node:
 """A wrapper function to create the tree from the diagram in quest
ions 1
 and 2 above, without the right-most subtree
 """
 walt = Node('Walt')
 jesse = Node('Jesse')
 jesse.left_node = Node('Brock')
 hank = Node('Hank')
 hank.left_node = Node('Sky')
 hank.right_node = Node('Steve')
 walt.left_node = jesse
 walt.right_node = hank
 return walt

creating the tree
testTree = create_test_tree()
you can now use 'testTree' to check your implementation, for example
has_val(testTree, 'Walt') should return True, while has_val(testTree
, 'Gus')
returns False

Questions 4 and 5 test your knowledge about recursion (https://www.geeksforgeeks.org/recursion-in-
python/) and efficiency.

Question 4: Efficiency - Fibonacci [2 pts]
We have the following recursive function that computes the Fibonacci number
(https://en.wikipedia.org/wiki/Fibonacci_number).

!"ℎ

In [5]: def fib(n):
 if (n <= 1):
 return 1
 else:
 return fib(n-1) + fib(n-2)

How many times does the function fib get called when fib(7) is called (i.e. calling fib at)?

As examples, number of calls to fib at is 1, and at is 9.

Assign your answer as a Python integer to variable ans4 below.

! = 7

! = 0 ! = 4

In [6]: ans4 = 41

https://www.geeksforgeeks.org/recursion-in-python/
https://en.wikipedia.org/wiki/Fibonacci_number

Question 5: Efficiency - Memoized Fibonacci [1 pt]
Now consider a "memoized" (https://en.wikipedia.org/wiki/Memoization) version of the fib(n) function.

In [7]: d = dict()
d[0] = 1
d[1] = 1
def fib_memoized(n):
 if n in d:
 return d[n]
 else:
 d[n] = fib_memoized(n-1) + fib_memoized(n-2)
 return d[n]

How many times does the function fib_memoized get called when fib_memoized(7) is called for the
first time? As examples:

Number of times fib_memoized is called when calling fib_memoized(0) for the first time is 1.
Number of times fib_memoized is called when calling fib_memoized(4) for the first time is 7.

Similar to question 4, assign your answer as a Python integer to variable ans5 below.

In [8]: ans5 = 13

Note that the number of calls to fib_memoized(7) is much less than that of fib(7) , making
fib_memoized much more efficient than fib .

Python Programming [10 pts]
This section is designed to test your familarity with Python programming language. Topics include string
methods, type conversion, data structures (e.g. list, tuple, dictionary), and file IO.

https://en.wikipedia.org/wiki/Memoization

Question 6: String Methods [2 pts]
Consider the string below assigned to s . Your task is to invoke the appropriate string method
(https://docs.python.org/3.7/library/string.html) on s so that a list is returned. Every element in the returned
list should be an individual element from s , separated by whitespace.

Please assign the returned list to ans6 . Please also refrain from "hard-coding" the answer, such as by
doing ans6 = ['Alan_Turing', 'Computer_Scientist', 'Mathematician'] .

In [9]: s = "Alan_Turing Computer_Scientist Mathematician"

ans6 = s.split(' ')

Question 7: Type Casting [1 pt]
Cast the list l defined below to a Python tuple (https://www.geeksforgeeks.org/tuples-in-python/) with
variable name ans7 . Please refrain from "hard-coding" the answer by doing ans7 = ('Alan_Turing',
'Computer_Scientist', 'Mathematician')

In [10]: l = ['Alan_Turing', 'Computer_Scientist', 'Mathematician']

ans7 = tuple(l)

Questions 8, 9, 10 are designed to test your familiarity with converting a text file to Python data structures.

We provide you the text file people.txt , in which the filepath is stored in variable INPUT_TEXT_FILE
(defined in the very first code block at the beginning of this notebook). The file contains several lines of text.
Each line has the format: name occupation1 occupation2 ... , where each word is separated by
spaces (see figure below).

https://docs.python.org/3.7/library/string.html
https://www.geeksforgeeks.org/tuples-in-python/

Question 8: File Input - List [3 pts]
Your task is to implement function read_to_list below that takes, as input, people.txt and converts
the text into a Python 2D list of strings, where the rows denote lines in the text, and the columns denote
words without whitespaces within each line. Note that the number of words for each line can be different
(see people.txt). Please also get rid of all whitespaces (e.g. newlines, spaces).

For example, read_to_list converts

Plato Philosopher \
Isaac_Newton Mathematician Physicist

into

[['Plato', 'Philosopher'], ['Isaac_Newton', 'Mathematician', 'Physicist']]

In [39]: def read_to_list(filepath: str) -> List[List[str]]:
 result = []
 with open(filepath) as f:
 for line in f.readlines():
 result.append(line.strip().split(' '))
 return result

Question 9: File Input - Dictionary [3 pts]
Now implement function read_to_dict below that takes, as input, people.txt and converts the text
into a Python dictionary, where the key denotes the occupation, and the values are a list of people with that
occupation. Similar to question 8, please also get rid of all whitespaces (e.g. newlines, spaces) in your
answer.

For example, read_to_dict converts

Isaac_Newton Mathematician Physicist \
Albert_Enstein Physicist

into

{ 'Mathematician': ['Isaac_Newton'], 'Physicist' : ['Isaac_Newton',
'Albert_Enstein'] }

In [11]: def read_to_dict(filepath: str) -> Dict[str, List[str]]:
 result = dict()
 with open(filepath) as f:
 for line in f.readlines():
 line = line.strip().split(' ')
 name, occupations = line[0], line[1:]
 for occupation in occupations:
 if occupation not in result:
 result[occupation] = []
 result[occupation].append(name)
 return result

Question 10: Using Dictionary [1 pt]
In the dictionary scientists defined below, many people are a Physicist (i.e. how many elements
are in the list value of key Physicist)? Please refrain from hard-coding the answer and use the
appropriate Python methods and syntax to answer this question. Assign your solution to variable ans10 .

In [12]: scientists = {
 'Mathematician': ['Isaac_Newton'],
 'Physicist' : ['Isaac_Newton', 'Albert_Enstein', 'Richard_Feynm
an']
}

ans10 = len(scientists['Physicist'])

